Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Frontiers in immunology ; 14, 2023.
Article in English | EuropePMC | ID: covidwho-2253824

ABSTRACT

The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence. Next generation vaccines that confer specific and targeted immunity to broadly neutralising epitopes on the SARS-CoV-2 spike protein against different variants of concern (VOC) offer an advance on current booster shots of previously used vaccines. Here, we present a targeted approach to elicit antibodies that neutralise both the ancestral SARS-CoV-2, and the VOCs, by introducing a specific glycosylation site on a non-neutralising epitope of the RBD. The addition of a specific glycosylation site in the RBD based vaccine candidate focused the immune response towards other broadly neutralising epitopes on the RBD. We further observed enhanced cross-neutralisation and cross-binding using a DNA-MVA CR19 prime-boost regime, thus demonstrating the superiority of the glycan engineered RBD vaccine candidate across two platforms and a promising candidate as a broad variant booster vaccine.

2.
Front Immunol ; 14: 1118523, 2023.
Article in English | MEDLINE | ID: covidwho-2253825

ABSTRACT

The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence. Next generation vaccines that confer specific and targeted immunity to broadly neutralising epitopes on the SARS-CoV-2 spike protein against different variants of concern (VOC) offer an advance on current booster shots of previously used vaccines. Here, we present a targeted approach to elicit antibodies that neutralise both the ancestral SARS-CoV-2, and the VOCs, by introducing a specific glycosylation site on a non-neutralising epitope of the RBD. The addition of a specific glycosylation site in the RBD based vaccine candidate focused the immune response towards other broadly neutralising epitopes on the RBD. We further observed enhanced cross-neutralisation and cross-binding using a DNA-MVA CR19 prime-boost regime, thus demonstrating the superiority of the glycan engineered RBD vaccine candidate across two platforms and a promising candidate as a broad variant booster vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Epitopes , COVID-19 Vaccines , Polysaccharides , Antibodies, Neutralizing
4.
J Med Virol ; 94(10): 4820-4829, 2022 10.
Article in English | MEDLINE | ID: covidwho-1941180

ABSTRACT

The virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease-2019 (COVID-19) pandemic, spread rapidly around the world causing high morbidity and mortality. However, there are four known, endemic seasonal coronaviruses in humans (HCoVs), and whether antibodies for these HCoVs play a role in severity of COVID-19 disease has generated a lot of interest. Of these seasonal viruses NL63 is of particular interest as it uses the same cell entry receptor as SARS-CoV-2. We use functional, neutralizing assays to investigate cross-reactive antibodies and their relationship with COVID-19 severity. We analyzed the neutralization of SARS-CoV-2, NL63, HKU1, and 229E in 38 COVID-19 patients and 62 healthcare workers, and a further 182 samples to specifically study the relationship between SARS-CoV-2 and NL63. We found that although HCoV neutralization was very common there was little evidence that these antibodies neutralized SARS-CoV-2. Despite no evidence in cross-neutralization, levels of NL63 neutralizing antibodies become elevated after exposure to SARS-CoV-2 through infection or following vaccination.


Subject(s)
COVID-19 , Coronavirus NL63, Human , Antibodies, Viral , Cross Reactions , Humans , Pandemics , SARS-CoV-2 , Seasons , Spike Glycoprotein, Coronavirus
5.
J Intensive Care Med ; 37(8): 1101-1111, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1775171

ABSTRACT

BACKGROUND: There have been over 200 million cases and 4.4 million deaths from COVID-19 worldwide. Despite the lack of robust evidence one potential treatment for COVID-19 associated severe hypoxaemia is inhaled pulmonary vasodilator (IPVD) therapy, using either nitric oxide (iNO) or prostaglandins. We describe the implementation of, and outcomes from, a protocol using IPVDs in a cohort of patients with severe COVID-19 associated respiratory failure receiving maximal conventional support. METHODS: Prospectively collected data from adult patients with SARS-CoV-2 admitted to the intensive care unit (ICU) at a large teaching hospital were analysed for the period 14th March 2020 - 11th February 2021. An IPVD was considered if the PaO2/FiO2 (PF) ratio was less than 13.3kPa despite maximal conventional therapy. Nitric oxide was commenced at 20ppm and titrated to response. If oxygenation improved Iloprost nebulisers were commenced and iNO weaned. The primary outcome was percentage changes in PF ratio and Alveolar-arterial (A-a) gradient. RESULTS: Fifty-nine patients received IPVD therapy during the study period. The median PF ratio before IPVD therapy was commenced was 11.33kPa (9.93-12.91). Patients receiving an IPVD had a lower PF ratio (14.37 vs. 16.37kPa, p = 0.002) and higher APACHE-II score (17 vs. 13, p = 0.028) at ICU admission. At 72 hours after initiating an IPVD the median improvement in PF ratio was 33.9% (-4.3-84.1). At 72 hours changes in PF ratio (70.8 vs. -4.1%, p < 0.001) and reduction in A-a gradient (44.7 vs. 14.8%, p < 0.001) differed significantly between survivors (n = 33) and non-survivors (n = 26). CONCLUSIONS: The response to IPVDs in patients with COVID-19 associated acute hypoxic respiratory failure differed significantly between survivors and non-survivors. Both iNO and prostaglandins may offer therapeutic options for patients with severe refractory hypoxaemia due to COVID-19. The use of inhaled prostaglandins, and iNO where feasible, should be studied in adequately powered prospective randomised trials.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Administration, Inhalation , Adult , COVID-19/complications , Compassionate Use Trials , Humans , Hypoxia/drug therapy , Hypoxia/etiology , Nitric Oxide/therapeutic use , Prospective Studies , Prostaglandins/therapeutic use , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/etiology , SARS-CoV-2 , Vasodilator Agents/therapeutic use
6.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1755572

ABSTRACT

The rise of SARS-CoV-2 variants has made the pursuit to define correlates of protection more troublesome, despite the availability of the World Health Organisation (WHO) International Standard for anti-SARS-CoV-2 Immunoglobulin sera, a key reagent used to standardise laboratory findings into an international unitage. Using pseudotyped virus, we examine the capacity of convalescent sera, from a well-defined cohort of healthcare workers (HCW) and Patients infected during the first wave from a national critical care centre in the UK to neutralise B.1.1.298, variants of interest (VOI) B.1.617.1 (Kappa), and four VOCs, B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta), including the B.1.617.2 K417N, informally known as Delta Plus. We utilised the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin to report neutralisation antibody levels in International Units per mL. Our data demonstrate a significant reduction in the ability of first wave convalescent sera to neutralise the VOCs. Patients and HCWs with more severe COVID-19 were found to have higher antibody titres and to neutralise the VOCs more effectively than individuals with milder symptoms. Using an estimated threshold for 50% protection, 54 IU/mL, we found most asymptomatic and mild cases did not produce titres above this threshold.

7.
Front Immunol ; 12: 748291, 2021.
Article in English | MEDLINE | ID: covidwho-1555236

ABSTRACT

Precision monitoring of antibody responses during the COVID-19 pandemic is increasingly important during large scale vaccine rollout and rise in prevalence of Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2) variants of concern (VOC). Equally important is defining Correlates of Protection (CoP) for SARS-CoV-2 infection and COVID-19 disease. Data from epidemiological studies and vaccine trials identified virus neutralising antibodies (Nab) and SARS-CoV-2 antigen-specific (notably RBD and S) binding antibodies as candidate CoP. In this study, we used the World Health Organisation (WHO) international standard to benchmark neutralising antibody responses and a large panel of binding antibody assays to compare convalescent sera obtained from: a) COVID-19 patients; b) SARS-CoV-2 seropositive healthcare workers (HCW) and c) seronegative HCW. The ultimate aim of this study is to identify biomarkers of humoral immunity that could be used to differentiate severe from mild or asymptomatic SARS-CoV-2 infections. Some of these biomarkers could be used to define CoP in further serological studies using samples from vaccination breakthrough and/or re-infection cases. Whenever suitable, the antibody levels of the samples studied were expressed in International Units (IU) for virus neutralisation assays or in Binding Antibody Units (BAU) for ELISA tests. In this work we used commercial and non-commercial antibody binding assays; a lateral flow test for detection of SARS-CoV-2-specific IgG/IgM; a high throughput multiplexed particle flow cytometry assay for SARS-CoV-2 Spike (S), Nucleocapsid (N) and Receptor Binding Domain (RBD) proteins); a multiplex antigen semi-automated immuno-blotting assay measuring IgM, IgA and IgG; a pseudotyped microneutralisation test (pMN) and an electroporation-dependent neutralisation assay (EDNA). Our results indicate that overall, severe COVID-19 patients showed statistically significantly higher levels of SARS-CoV-2-specific neutralising antibodies (average 1029 IU/ml) than those observed in seropositive HCW with mild or asymptomatic infections (379 IU/ml) and that clinical severity scoring, based on WHO guidelines was tightly correlated with neutralisation and RBD/S antibodies. In addition, there was a positive correlation between severity, N-antibody assays and intracellular virus neutralisation.


Subject(s)
COVID-19/immunology , Convalescence , Immunity, Humoral , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19 Serological Testing/standards , Calibration , Humans , Immunoglobulin Isotypes/blood , Immunoglobulin Isotypes/immunology , Reference Standards , Severity of Illness Index
8.
Viruses ; 13(8)2021 08 10.
Article in English | MEDLINE | ID: covidwho-1348697

ABSTRACT

The novel coronavirus SARS-CoV-2 is the seventh identified human coronavirus. Understanding the extent of pre-existing immunity induced by seropositivity to endemic seasonal coronaviruses and the impact of cross-reactivity on COVID-19 disease progression remains a key research question in immunity to SARS-CoV-2 and the immunopathology of COVID-2019 disease. This paper describes a panel of lentiviral pseudotypes bearing the spike (S) proteins for each of the seven human coronaviruses (HCoVs), generated under similar conditions optimized for high titre production allowing a high-throughput investigation of antibody neutralization breadth. Optimal production conditions and most readily available permissive target cell lines were determined for spike-mediated entry by each HCoV pseudotype: SARS-CoV-1, SARS-CoV-2 and HCoV-NL63 best transduced HEK293T/17 cells transfected with ACE2 and TMPRSS2, HCoV-229E and MERS-CoV preferentially entered HUH7 cells, and CHO cells were most permissive for the seasonal betacoronavirus HCoV-HKU1. Entry of ACE2 using pseudotypes was enhanced by ACE2 and TMPRSS2 expression in target cells, whilst TMPRSS2 transfection rendered HEK293T/17 cells permissive for HCoV-HKU1 and HCoV-OC43 entry. Additionally, pseudotype viruses were produced bearing additional coronavirus surface proteins, including the SARS-CoV-2 Envelope (E) and Membrane (M) proteins and HCoV-OC43/HCoV-HKU1 Haemagglutinin-Esterase (HE) proteins. This panel of lentiviral pseudotypes provides a safe, rapidly quantifiable and high-throughput tool for serological comparison of pan-coronavirus neutralizing responses; this can be used to elucidate antibody dynamics against individual coronaviruses and the effects of antibody cross-reactivity on clinical outcome following natural infection or vaccination.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Coronavirus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/blood , Broadly Neutralizing Antibodies/blood , Cell Line , Coronavirus 229E, Human/immunology , Coronavirus 229E, Human/physiology , Coronavirus NL63, Human/immunology , Coronavirus NL63, Human/physiology , Coronavirus OC43, Human/immunology , Coronavirus OC43, Human/physiology , Cross Reactions , Humans , Lentivirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/physiology , Neutralization Tests , Plasmids , SARS-CoV-2/physiology , Transfection , Virus Internalization
9.
Front Immunol ; 12: 714511, 2021.
Article in English | MEDLINE | ID: covidwho-1320579

ABSTRACT

Early and persistent activation of complement is considered to play a key role in the pathogenesis of COVID-19. Complement activation products orchestrate a proinflammatory environment that might be critical for the induction and maintenance of a severe inflammatory response to SARS-CoV-2 by recruiting cells of the cellular immune system to the sites of infection and shifting their state of activation towards an inflammatory phenotype. It precedes pathophysiological milestone events like the cytokine storm, progressive endothelial injury triggering microangiopathy, and further complement activation, and causes an acute respiratory distress syndrome (ARDS). To date, the application of antiviral drugs and corticosteroids have shown efficacy in the early stages of SARS-CoV-2 infection, but failed to ameliorate disease severity in patients who progressed to severe COVID-19 pathology. This report demonstrates that lectin pathway (LP) recognition molecules of the complement system, such as MBL, FCN-2 and CL-11, bind to SARS-CoV-2 S- and N-proteins, with subsequent activation of LP-mediated C3b and C4b deposition. In addition, our results confirm and underline that the N-protein of SARS-CoV-2 binds directly to the LP- effector enzyme MASP-2 and activates complement. Inhibition of the LP using an inhibitory monoclonal antibody against MASP-2 effectively blocks LP-mediated complement activation. FACS analyses using transfected HEK-293 cells expressing SARS-CoV-2 S protein confirm a robust LP-dependent C3b deposition on the cell surface which is inhibited by the MASP-2 inhibitory antibody. In light of our present results, and the encouraging performance of our clinical candidate MASP-2 inhibitor Narsoplimab in recently published clinical trials, we suggest that the targeting of MASP-2 provides an unsurpassed window of therapeutic efficacy for the treatment of severe COVID-19.


Subject(s)
COVID-19/blood , Complement Activation/immunology , Complement System Proteins/metabolism , Lectins/blood , Renal Insufficiency, Chronic/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Adult , Aged , Aged, 80 and over , Asian People , Biomarkers/blood , COVID-19/complications , COVID-19/pathology , COVID-19/physiopathology , Cohort Studies , Complement System Proteins/immunology , Female , Humans , Male , Middle Aged , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/virology , Severity of Illness Index , White People
11.
J Intensive Care Soc ; 23(3): 285-292, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1136203

ABSTRACT

Background: Whilst the management of Coronavirus disease-2019 (COVID-19) has evolved in response to the emerging data, treating such patients remains a challenge, and many treatments lack robust clinical evidence. We conducted a survey to evaluate Intensive Care Unit (ICU) management of COVID-19 patients with acute hypoxic respiratory failure and compared the results with data from a similar survey focusing on Acute Respiratory Distress Syndrome (ARDS) that was conducted in 2013. Methods: The questionnaire was refined from a previous survey of ARDS-related clinical practice using an online electronic survey engine (Survey Monkey®) and all UK intensivists were encouraged to participate. The survey was conducted between 16/05/2020 and 17/06/2020. Results: There were 137 responses from 89 UK centres. Non-invasive ventilation was commonly used in the form of CPAP. The primary ventilation strategy was the ARDSnet protocol, with 63% deviating from its PEEP recommendations. Similar to our previous ARDS survey, most allowed permissive targets for hypoxia (94%), hypercapnia (55%) and pH (94%). The routine use of antibiotics was common, and corticosteroids were frequently used, usually in the context of a clinical trial (45%). Late tracheostomy (>7 days) was preferred (92%). Routine follow-up was offered by 66% with few centres providing routine dedicated rehabilitation programmes following discharge. Compared to the ARDS survey, there is an increased use of neuromuscular agents, APRV ventilation and improved provision of rehabilitation services. Conclusions: Similar to our previous ARDS survey, this survey highlights variations in the management strategies used for patients with acute hypoxic respiratory failure due to COVID-19.

12.
F1000Res ; 9: 859, 2020.
Article in English | MEDLINE | ID: covidwho-902998

ABSTRACT

Critically ill patients admitted to hospital following SARS-CoV-2 infection often experience hypoxic respiratory failure and a proportion require invasive mechanical ventilation to maintain adequate oxygenation. The combination of prone positioning and non-invasive ventilation in conscious patients may have a role in improving oxygenation. The purpose of this study was to assess the effect of prone positioning in spontaneously ventilating patients receiving non-invasive ventilation admitted to the intensive care.  Clinical data of 81 patients admitted with COVID 19 pneumonia and acute hypoxic respiratory failure were retrieved from electronic medical records and examined. Patients who had received prone positioning in combination with non-invasive ventilation were identified. A total of 20 patients received prone positioning in conjunction with non-invasive ventilation. This resulted in improved oxygenation as measured by a change in PaO 2/FiO 2 (P/F) ratio of 28.7 mmHg while prone, without significant change in heart rate or respiratory rate. Patients on average underwent 5 cycles with a median duration of 3 hours. There were no reported deaths, 7 of the 20 patients (35%) failed non-invasive ventilation and subsequently required intubation and mechanical ventilation. In our cohort of 20 COVID-19 patients with moderate acute hypoxic respiratory failure, prone positioning with non-invasive ventilation resulted in improved oxygenation. Prone positioning with non-invasive ventilation may be considered as an early therapeutic intervention in COVID-19 patients with moderate acute hypoxic respiratory failure.


Subject(s)
Coronavirus Infections/therapy , Noninvasive Ventilation , Patient Positioning , Pneumonia, Viral/therapy , Prone Position , Betacoronavirus , COVID-19 , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL